Mathematical Analysis - List 16

1. Find the indicated partial derivative. Assume the variables are restricted to a domain on which the function is defined.

a)
$$\frac{\partial F}{\partial m_2}$$
 and $\frac{\partial F}{\partial r}$ if $F = \frac{Gm_1m_2}{r^2}$; b) $\frac{\partial m}{\partial v}$ if $m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$;
c) z_x and z_y if $z = x^9 + 3^2y + x^y$; d) z_y if $z = \frac{4x^2y^7 - y^2}{15xy - 8y}$;
e) $\frac{\partial}{\partial \lambda} \left(\frac{x^2y\lambda - 3\lambda^5}{\sqrt{\lambda^2 - 3\lambda + 7}}\right)$; f) $\frac{\partial}{\partial w} \left(\frac{x^2yw - 3xy^3w^5}{3w^2 + 2}\right)^{-5/2}$.

2. Show that the function $Q(K,L) = bK^{\alpha}L^{1-\alpha}$, where $0 < \alpha < 1$, satisfies the equation

$$K\frac{\partial Q}{\partial K} + L\frac{\partial Q}{\partial L} = Q.$$

3. Compute all second-order partial derivatives.

a) $f(x,y) = \sin(x^2 + y^2)$; b) $f(x,y) = xe^{xy}$; c) $f(x,y) = x + \frac{x}{y}$; d) $f(x,y) = y \ln(xy)$; e) $f(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$; f) $f(x,y,z) = \ln(x^2 + y^4 + z^6 + 1)$.

4. Let
$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$$
. Compute $f_{xy}(0,0)$ and $f_{yx}(0,0)$

5. Compute

a)
$$\frac{\partial^3 f}{\partial y \partial x^2}$$
 for $f(x, y) = \cos(xy)$; b) $\frac{\partial^3 f}{\partial x \partial y^2 \partial z^2}$ for $f(x, y, z) = e^{xy+z}$.
6. Let $f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{for } (x, y) \neq (0, 0) \\ 0 & \text{for } (x, y) = (0, 0) \end{cases}$.
a) Is f differentiable for $(x, y) \neq (0, 0)$?
b) Find $f_x(0, 0)$ and $f_y(0, 0)$.
c) Is f differentiable at $(0, 0)$?

7. Find the equation of the tangent plane to $z = \sqrt{17 - x^2 - y^2}$ at the point (2, 3, 2).

8. Find the equation of the tangent plane to $z = \frac{8}{xy}$ at the point (2, 1, 4).

- **9.** Let $f(x, y) = (e^x x) \cos y$. Find a vector which is perpendicular to the level curve of f through the point (2, 3) in the direction in which f decreases most rapidly.
- **10.** At what point on the surface $z = 1 + x^2 + y^2$ is its tangent plane parallel to the following planes? a) z - 5 = 0, b) 6x - 10y - z + 5 = 0.
- 11. A differentiable function f has the property that f(1,3) = 7 and $\operatorname{grad} f(1,3) = 2\vec{i} 5\vec{j}$. a) Find the equation of the tangent line to the level curve of f through the point (1,3).
 - b) Find the equation of the tangent plane to the surface z = f(x, y) at the point (1, 3, 7).